Search results for "MESH: Insulin Resistance"

showing 2 items of 2 documents

Immune Cell Toll-like Receptor 4 Mediates the Development of Obesity- and Endotoxemia-Associated Adipose Tissue Fibrosis

2014

International audience; Adipose tissue fibrosis development blocks adipocyte hypertrophy and favors ectopic lipid accumulation. Here, we show that adipose tissue fibrosis is associated with obesity and insulin resistance in humans and mice. Kinetic studies in C3H mice fed a high-fat diet show activation of macrophages and progression of fibrosis along with adipocyte metabolic dysfunction and death. Adipose tissue fibrosis is attenuated by macrophage depletion. Impairment of Toll-like receptor 4 signaling protects mice from obesity-induced fibrosis. The presence of a functional Toll-like receptor 4 on adipose tissue hematopoietic cells is necessary for the initiation of adipose tissue fibros…

LipopolysaccharidesMESH: Signal TransductionMESH: InflammationMESH : Toll-Like Receptor 4Adipose tissueMESH : AdipocytesMESH : LipopolysaccharidesMicechemistry.chemical_compoundFibrosisAdipocyteAdipocytes[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyMESH: ObesityMESH: Animalslcsh:QH301-705.5Mice Inbred C3HToll-like receptorMESH : Diet High-FatMESH: Toll-Like Receptor 43. Good healthMESH: Insulin ResistanceAdipose TissueMESH: FibrosisMESH : Fibrosis[SDV.IMM]Life Sciences [q-bio]/ImmunologyMESH : ObesityMESH : Insulin ResistanceMESH: Adipose TissueSignal Transductionmedicine.medical_specialty[SDV.IMM] Life Sciences [q-bio]/ImmunologyAdipose tissue macrophagesBiologyDiet High-FatMESH : Adipose TissueGeneral Biochemistry Genetics and Molecular BiologyImmune systemMESH : Mice Inbred C3HInternal medicineMESH : MicemedicineAnimalsHumansObesityMESH: Mice Inbred C3HMESH: MiceMESH: AdipocytesInflammationMESH : Signal TransductionMESH : InflammationMESH: HumansMESH : EndotoxemiaMESH : Humans3T3-L1medicine.diseaseFibrosisMESH : Disease Models AnimalEndotoxemiaToll-Like Receptor 4Disease Models AnimalMESH: Diet High-FatEndocrinologylcsh:Biology (General)chemistryMESH: EndotoxemiaMESH : AnimalsInsulin ResistanceMESH: Disease Models AnimalMESH: LipopolysaccharidesAdipocyte hypertrophyCell Reports
researchProduct

Apelin treatment increases complete Fatty Acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.

2012

Both acute and chronic apelin treatment have been shown to improve insulin sensitivity in mice. However, the effects of apelin on fatty acid oxidation (FAO) during obesity-related insulin resistance have not yet been addressed. Thus, the aim of the current study was to determine the impact of chronic treatment on lipid use, especially in skeletal muscles. High-fat diet (HFD)-induced obese and insulin-resistant mice treated by an apelin injection (0.1 μmol/kg/day i.p.) during 4 weeks had decreased fat mass, glycemia, and plasma levels of triglycerides and were protected from hyperinsulinemia compared with HFD PBS-treated mice. Indirect calorimetry experiments showed that apelin-treated mice…

MESH: Oxidation-Reduction[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and MetabolismGlucose uptakeAMP-Activated Protein KinasesInbred C57BLMice0302 clinical medicineAMP-activated protein kinaseMESH : Lipid MetabolismHyperinsulinemiaMESH: AnimalsMESH: AMP-Activated Protein KinasesMESH : Muscle SkeletalMESH : Fatty AcidsBeta oxidationMESH: Lipid Metabolism0303 health sciencesMESH: Muscle SkeletalbiologyMESH : Diet High-FatFatty AcidsMESH: Energy MetabolismMESH : AMP-Activated Protein KinasesMESH: Mitochondria MuscleSkeletal3. Good healthApelinMitochondriaMESH: Fatty AcidsMESH : Cyclic AMP-Dependent Protein KinasesMESH: Insulin ResistanceAlimentation et NutritionApelinIntercellular Signaling Peptides and ProteinsMuscleMESH : Insulin ResistanceOxidation-Reductionmedicine.medical_specialtyMESH : Mitochondria Muscle030209 endocrinology & metabolismMESH : Mice Inbred C57BLMESH: Cyclic AMP-Dependent Protein KinasesDiet High-Fat03 medical and health sciencesInsulin resistanceAdipokinesMESH: Mice Inbred C57BLInternal medicineMESH : MiceInternal MedicinemedicineFood and NutritionAnimalsMuscle SkeletalMESH: Intercellular Signaling Peptides and ProteinsMESH: MiceMESH : Intercellular Signaling Peptides and Proteins030304 developmental biologyMESH : Oxidation-ReductionAMPKmedicine.diseaseLipid MetabolismCyclic AMP-Dependent Protein KinasesMitochondria MuscleDietMice Inbred C57BLMESH : Energy Metabolism[SDV.AEN] Life Sciences [q-bio]/Food and NutritionAMP-Activated Protein Kinases;Animals;Cyclic AMP-Dependent Protein Kinases;Diet;High-Fat;Energy Metabolism;Fatty Acids;Insulin Resistance;Intercellular Signaling Peptides and Proteins;Lipid Metabolism;Mice;Inbred C57BL;Mitochondria;Muscle;Skeletal;Oxidation-ReductionHigh-FatMESH: Diet High-FatMetabolismEndocrinologyMitochondrial biogenesisbiology.proteinMESH : AnimalsInsulin ResistanceEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct